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ABSTRACT
Solid solutions, structurally ordered but compositionally disordered mixtures, can form for salts, metals, and even organic compounds. The
NaCl–KCl system forms a solid solution at all compositions between 657 ○C and 505 ○C. Below a critical temperature of 505 ○C, the system
exhibits a miscibility gap with coexisting Na-rich and K-rich rocksalt phases. We calculate the phase diagram in this region using the semi-
grand canonical Widom method, which averages over virtual particle transmutations. We verify our results by comparison with free energies
calculated from thermodynamic integration and extrapolate the location of the critical point. Our calculations reproduce the experimental
phase diagram remarkably well and illustrate how solid–solid equilibria and chemical potentials, including those at metastable conditions,
can be computed for materials that form solid solutions.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0003224., s

I. INTRODUCTION

Solid solutions are ubiquitous in metallurgy,1,2 geochemistry,3,4

biomineralization,5–7 and many other areas of modern materials sci-
ence.8–13 The atoms in a solid solution reside at regular lattice posi-
tions, but the components are randomly intermixed on the lattice.
At sufficiently low temperatures, many solid solutions separate into
periodic phases with different compositions. Thus, solid solutions
are nearly perfect realizations of the idealized lattice models that are
widely used to study phase transitions in statistical mechanics.14,15

At low temperatures, some solid solutions form “coherent precip-
itates,” i.e., solute-rich precipitates embedded in the surrounding
solvent matrix, with both phases sharing one unbroken lattice. Fur-
thermore, certain solid solutions can be quenched to form enormous
populations of nanoscale coherent precipitates yielding materials
with extraordinary mechanical, magnetic, and heat transfer prop-
erties. Examples include precipitate-hardened Ni–Ti–Al superal-
loys,16,17 Heusler or half-Heusler magnetic materials,18 and radiation
resistant alloys for nuclear reactor claddings.19,20

For these materials (also for solids in general), the earliest
stages of crystallization, namely, nucleation and subsequent growth,
are a major determinant of the structure and hence the proper-
ties of the resulting product. Consequently, fundamental studies of
nucleation and growth are essential, but challenging both experi-
mentally and theoretically.21–23 Notable studies of nucleation and
growth in solid solutions have employed kinetic Monte Carlo simu-
lations.24–28 However, rare events such as nucleation still pose chal-
lenges for kinetic Monte Carlo and molecular simulations. The avail-
able empirical potentials for multicomponent systems rarely make
accurate property predictions, while ab initio calculations are too
costly to capture the statistical ensembles—a sampling issue.29

Simple abstract model systems often yield the most useful and
generalizable insights,30,31 but it is difficult to quantitatively test their
predictions against the experiment. This paper investigates a simple
but a real model system, a binary mixture of KCl and NaCl salts.
Most molten salt mixtures exhibit a sharp eutectic point, without the
rather wide and unusual solid solution region seen for NaCl–KCl. In
the case of the NaCl–KCl solid solution, the chlorine atoms occupy
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every other site of a simple cubic lattice, just like in regular rocksalt.
The sodium and potassium atoms, which occupy the other half of
the rocksalt lattice, are randomly distributed. An illustration of the
situation is shown in Fig. 1.

The full phase diagram of the NaCl–KCl system, obtained from
the FTsalt database32 that combines multiple experimental results
(along with the predicted data from the current simulation study) is
shown in Fig. 2. The data displayed in the phase diagram were orig-
inally compiled by JANAF33 and have just recently been re-verified
experimentally.34 Of particular interest to our study is the fact that
for low temperatures, there exists a miscibility gap separating two
compositionally different solid solutions, a Na-rich and a K-rich
one.

Here, we have predicted the Na-rich/K-rich phase envelope in
the solid part of the phase diagram using molecular simulation. The
calculated phase diagram reproduces the experimental phase dia-
gram remarkably well (Fig. 2). The calculations enable us to predict
the difference in chemical potential for NaCl and KCl for any sys-
tem composition, including the unstable region inside the two-phase
envelope.

An important significance of this study is that having an accu-
rate phase diagram now enables quantitative theoretical studies of
nucleation to be carried out for this model, as the chemical poten-
tial is now accurately defined rather than assumed being equal to
experimental data. Theoretical models invariably show divergence
from experimental data, and the driving force or the chemical poten-
tial estimated from experimental data can be markedly different
from that of the model, introducing significant uncertainty in the
calculated nucleation rates.

In predicting the phase diagram, we have employed two dis-
tinct approaches: (i) the semi-grand canonical approach with the
dependent variable being composition as a function of set chemical

FIG. 1. Rendering of a single crystal plane in the NaCl–KCl solid solution. While Cl
(green) occupies a regular lattice, Na (blue) and K (yellow) are randomly distributed
on the remaining lattice sites. For clarity, thermal fluctuations are not shown.

potential difference and (ii) Widom’s semi-grand canonical
approach involving virtual transmutation of one species to another
to determine the chemical potential difference (the dependent vari-
able in this case) as a function of set composition. While we
have demonstrated that both approaches give consistent results, the
Widom’s semi-grand approach has significant advantages and hence
was our method of choice. We introduce the computational model
in Sec. II A, outline the regular semi-grand canonical ensemble in
Sec. II B, and compare it with semi-grand canonical Widom method

FIG. 2. Phase diagram for the NaCl–
KCl system (obtained from the FTsalt
database32), which combines multiple
experimental results along with the pre-
dicted data (orange squares) from the
current simulation study.
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in Sec. II C. Details of the coexistence calculations are presented in
Secs. II D and II E. The results are presented and discussed in Sec. III
followed by concluding remarks in Sec. IV.

II. MODEL AND METHODS
A. Force field

In order to model the NaCl–KCl system, we employ a Fumi–
Tosi35 style force field. The full potential energy is given as a sum of
pair terms,

U = ∑
i<j

u(rij), (1)

where

u(rij) = Aij exp[Bij(σij − rij)] −
Cij

r6
ij
−

Dij

r8
ij

+
1

4πε0

qiqj

rij
(2)

and rij is the distance between particles i and j. The parameters Aij,
Bij, Cij, Dij, and σij are specific for the combination of elements of
particles i and j, and hence, there are six sets of parameters for all the
possible element pairings. These parameters, shown in Table I, are
based on those given by Adams and MacDonald.36

The final term in the force field is the electrostatic interaction,
where the charges (in units of the elementary charge qe) are +1 on
Na and K and −1 on Cl. With the system of units employed in this
study, (4πε0)

−1
= 1389.35 kJ/mol Å q−2

e , where ϵ0 is the permitivity
of free space.

Interestingly, in the parameter set tabulated by Adams and
MacDonald,36 the Cl–Cl C parameter for Cl in NaCl (6985.70 Å6

kJ mol−1) is different from that for Cl in KCl (7497.60 Å6 kJ mol−1).
Here, we have utilized the average of these two parameter values. The
same is true for the Cl–Cl B and D parameters utilized in the present
study. For the Na–K hetero-interaction, the σ parameter was taken
as the arithmetic mean of the homo-interactions. For the C and D
parameters, the commonly employed geometric mean mixing rule
was found to be completely inappropriate: for instance, the Na–Cl C
parameter obtained from the geometric mean of the Cl–Cl (in NaCl)
and Na–Na C parameters yielded a value that was almost 25% larger
than the specified Na–Cl C parameter tabulated by Adams and Mac-
Donald.36 On searching the literature, we came across the alternative
mixing rule proposed by Thakkar,37

Cij =
2αiαjCiCj

α2
i Ci + α2

j Cj
, (3)

TABLE I. Force field parameters for NaCl–KCl.

A B C D σ

kJ/mol Å−1 Å6 kJ/mol Å8 kJ/mol Å

Na–Na 25.444 3.155 101.17 48.18 2.340
Na–Cl 20.355 3.155 674.48 837.08 2.755
Cl–Cl 15.266 3.061 7241.65 14 543.47 3.170
K–K 25.444 2.967 1463.38 1 445.31 2.926
K–Na 25.444 3.061 377.31 260.28 2.633
K–Cl 20.355 2.967 2890.63 4 396.16 3.048

where αi are (dimensionless) polarizabilities. Thakkar’s rule repro-
duced the Na–Cl C and D interaction parameters using polarizabil-
ities taken from Mayer38 with no more than 4% deviation or better.
Consequently, the Na–K C and D parameters were estimated with
Thakkar’s mixing rule using the polarizabilities of αNa = 0.1820 and
αK = 0.8443 from Mayer.38

B. Semi-grand canonical ensemble simulation
Fluid–fluid phase equilibria require thermal, mechanical, and

compositional equilibrium, i.e., T = T1 = T2, p = p1 = p2, and
μ(x1, T, p) = μ(x2, T, p). If one can guess the approximate fluid den-
sities and a composition between x1 and x2, then the equilibrium
conditions can often be identified from a simple direct coexistence
simulation. A system held at T, p, and intermediate overall compo-
sition will spontaneously split into two phases, one at composition
x1 separated by an interface from the other at composition x2. In
a long thin simulation box with fixed cross section and pressure
applied from the ends, the interface spontaneously forms perpen-
dicular to the long axis such that surface tension exerts no pressure
on the adjacent “bulk” phases. If the box is much longer than the
interface thickness, the equilibrium compositions can then be esti-
mated from the simulated concentration profiles.39–41 Similar direct
coexistence simulations have been used to estimate solubilities of
certain solids.42–45 An alternative collection of indirect Monte Carlo
techniques, which have found widespread application, can iden-
tify phase coexistence conditions without ever simulating the inter-
face between phases or guessing approximate densities and com-
positions. These include grand canonical ensemble simulations,46,47

the Gibbs ensemble simulations,48 Gibbs–Duhem integration,49,50

density of states methods,51,52 and osmotic ensemble Monte Carlo
simulations.53

For multicomponent solid–solid equilibria, the same condi-
tions apply at equilibrium. However, additional difficulties require
methods beyond those used for fluid–fluid and fluid–solid equilib-
ria. First, a dense crystalline solid with no vacancies has no free
space for inserting or growing new particles, thus preventing the
use of grand canonical simulations, osmotic ensemble simulations,
and Gibbs-ensemble simulations with particle insertions. Second, a
simulated periodic crystal has allowed volumes that are effectively
discretized by the need to complete integer layers of the crystal, thus
also preventing the use of Gibbs ensemble simulations with parti-
cle exchanges. Third, two solids in direct contact with each other
exert stresses on the neighboring phase,54 especially when they share
a coherent interface as expected for KCl inclusions in NaCl or NaCl
inclusions in KCl. These stresses cause long range strain (lattice dis-
tortion) in the two solids. The stresses and strains can alter equilib-
rium compositions,55 so direct solid–solid coexistence simulations
are also not an option.

To enable the calculation of multicomponent solid–solid equi-
libria, we explore the semi-grand approach by Kofke and Glandt,56

where particles are transmutated into alternative species instead of
being inserted. The acceptance probability depends on the chem-
ical potential difference between the species, rather than the indi-
vidual chemical potentials. For the binary solid solution, the semi-
grand approach therefore yields the required composition ratio as
the function of defined chemical potential difference Δμ = μB − μA.
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We utilized the semi-grand ensemble for the NaCl–KCl solid
solution to determine co-existence compositions at a number
of temperatures but found this strategy cumbersome and ineffi-
cient compared with the Widom’s semi-grand approach detailed
in Sec. II C.

C. Semi-grand canonical Widom simulation
The test particle method originally introduced by Widom57

directly probes the excess chemical potential of a substance in a sim-
ulation. In the case of a system of N identical particles of mass m
at pressure p and temperature T, the isothermal-isobaric partition
function is

ZNpT ≡
βp
h3N

1
N! ∫

∞

0
dV e−βpV

∫ drN dpN e−βH(rN ,pN), (4)

where H(rN , pN ) is the system’s Hamiltonian, β = 1/kBT, kB is
the Boltzmann constant, and h is Planck’s constant. The chemical
potential μ can be calculated from

βμ =
∂

∂N
[− ln ZNpT]. (5)

The Hamiltonian is

H(rN , pN
) =

N

∑

i=1

p2
i

2m
+ U(rN

), (6)

so we can split μ into an ideal and excess part,

μ = μid + μex. (7)

The ideal part is given by setting U(rN ) = 0, explicitly performing the
momentum integrals, and then applying Eq. (5),

e−βμ
id

≡
1

βpΛ3 , (8)

where Λ =
√

βh2
/2πm is the thermal de Broglie wavelength.

For large N, the derivative in Eq. (5) can be substituted by
a finite difference ΔN = 1, and the logarithm turns a difference
into a ratio of partition functions. One can then show that in the
thermodynamic limit, we have, for the excess part,

e−βμ
ex

=

βp⟨Ve−βΔU(r0 ∣r1...,rN)
⟩

N

N + 1
. (9)

The average is taken over a uniformly distributed test particle (index
0) in a regular NpT simulation box, and the factor in the exponen-
tial is the energy change associated with the virtual insertion of this
test particle. In the case of an NVT ensemble, Widom’s formula
reduces to

e−βμ
ex

= ⟨e−βΔU(r0 ∣r1...,rN)
⟩

N
. (10)

While, in principle, exact Widom’s method in practice suffers from
poor convergence in dense systems or crystals.

For multi-component systems, an alternative approach to vir-
tual particle insertions is to average over virtual particle transmu-
tations, as shown by Sindzingre et al.58 This makes the method
applicable to crystals, enabling the determination of the chemical

potential difference for the transmutation of one chemical species
to another in the lattice. Consider a two-component system (com-
prised of components A and B) at temperature T and pressure p.
The total particle number is N = NA + NB. Now, the partition
function is

ZNA ,NB ,p,T = βp∫
∞

0
dV e−βpV ZNA ,NB ,V ,T , (11)

where

ZNA ,NB ,V ,T =
1

h3N
1

NA!NB! ∫
drN dpN e−βH(rN ,pN) (12)

and the ideal part is given by

Zid
NA ,NB ,p,T =

N!
NA!NB!

1
(βp)N

1
Λ3NA

A

1
Λ3NB

B

, (13)

where ΛA =
√

βh2
/2πmA is the thermal de Broglie wavelength for

species A with mass mA and ΛB is defined accordingly. The chemical
potential for species A is the derivative

βμA = −
∂

∂NA
ln ZNA ,NB ,p,T = β(μid

A + μex
A ), (14)

with μB defined accordingly.
Consider the difference in chemical potential,

Δμ ≡ μB − μA. (15)

The ideal component of the chemical potential difference can be
calculated analytically,

Δμid
≡ μid

B − μ
id
A = −

1
β
[

3
2

ln(
mB

mA
) + ln(

NA

NB
)]. (16)

For the excess chemical potential difference, we consider the case
when a particle of type A is converted into type B or vice versa. The
difference in excess chemical potential is then directly related to the
exponential average of the energy change for the transmutation,

Δμex
≡ μex

B − μ
ex
A = −

1
β

ln⟨e−βΔU(A− ,B+)
⟩

NA ,NB
(17)

=
1
β

ln⟨e−βΔU(A+ ,B−)
⟩

NA ,NB
. (18)

This quantity can be probed using virtual Monte Carlo transmuta-
tion moves in an otherwise standard NpT simulation, which itself
can be either Monte Carlo or molecular dynamics. It is worth not-
ing that here, the system composition is fixed at (NA, NB), while
the excess chemical potential difference is the dependent variable.
This is in stark contrast to a simulation in the semi-grand canoni-
cal ensemble, where one fixes the chemical potential difference and
obtains the composition as a result. Note that Widom’s semi-grand
method was used in an earlier study to predict the phase diagram of
MgO–MnO solid solution,59 but that work refers to the method as a
semi-grand canonical simulation.
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D. Gibbs free energy from the chemical potential
difference

In a binary mixture of species A and B, the full Gibbs free energy
per particle is given as

Ĝ(NA, NB, p, T) = xAμA + xBμB, (19)

where xi = N i/N is the mole fraction of species i and Ĝ = G/N. Since
xB = 1 − xA, we have

∂Ĝ
∂xB
= μB − μA = Δμ, (20)

which relates the Gibbs free energy to the chemical potential differ-
ence that we obtain from simulations. Using the simplified notation
x: = xB, one has

Ĝ(x) = ĜA + ∫
x

0
dx′ Δμ(x′). (21)

In other words, but for the reference value ĜA (the Gibbs free energy
of a pure A system), the calculation of Δμ as a function of sys-
tem composition is sufficient to construct its Gibbs free energy as a
function of composition, enabling the determination of co-existence
points and hence the binary phase diagram.

In the context of mixtures, the Gibbs free energy is often written
in a slightly different form as

Ĝ = ĜI + ĜE. (22)

Again, Ĝ is split into an ideal and excess part, but “ideal” and “excess”
in this case have a different meaning. The ideal Gibbs energy is now
given as

ĜI
(x)

kBT
= (1 − x)

ĜA

kBT
+ x

ĜB

kBT
+ (1 − x) ln(1 − x) + x ln x, (23)

where ĜA and ĜB describe the pure end states (including all non-
idealities in the sense of Sec. II C). The ideal Gibbs energy of the
mixture is a composition-weighted linear combination of the pure
states plus two mixing entropy terms. This result is consistent with
explicitly integrating the ideal gas case, i.e., using Eq. (16) in Eq. (21),
and noting that in the special case of two ideal gases that only differ
in particle mass, we have

ĜB

kBT
=

ĜA

kBT
−

3
2

ln
mB

mA
. (24)

Naturally, for any system with non-zero interactions (such as NaCl–
KCl), this simple relation between ĜA and ĜB does not hold
true.

The change of notation is intended here as we want to empha-
size that we will, in the following, assume some functional form for
the excess part and fit it to the simulation results. The simplest choice
for GE is called the regular solution model, and is usually written in
the form

GE

kBT(1 − x)x
= Ω. (25)

The regular solution model is symmetric with respect to A–B inter-
actions, i.e., A in a B solvent has the same GE as B in an A solvent. The
single parameter Ω measures the difference in interaction between
the two species. More explicitly,

Ω = Nb(εAB −
εAA + εBB

2
), (26)

where Nb is the number of bonds per particle and ϵij is the interac-
tion energy of a bond between species i and j. Our results show that
a regular solution model is not sufficient for the NaCl–KCl mixture.
Asymmetry can be introduced with the two-parameter Margules
model,

GE

kBT(1 − x)x
=W1(1 − x) + W2x, (27)

which we used to fit our simulation data. Specifically, we combine
Eqs. (22), (23) and (27) to get the full Gibbs free energy and then
take the derivative with respect to x in order to obtain Δμ, Eq. (20).
The final functional form we use to fit Δμ(x) is hence

Δμ
kBT
=W0 +ln(

x
1 − x

)+W1(1−x)(1−3x)−W2x[1−3(1−x)], (28)

where the parameter W0 = (ĜB − ĜA)/kBT can be identified as the
chemical potential difference of the pure phases. The corresponding
Gibbs free energy per particle is

Ĝ(x)
kBT

= xW0 + (1 − x) ln(1 − x) + x ln(x)

+ x(1 − x)[W1(1 − x) + W2x]. (29)

Here, we have used the normalization ĜA = 0. As we will see momen-
tarily, knowledge of the absolute value is not important for the
construction of the phase diagram. However, should the Gibbs free
energies ĜA and ĜB of the pure end states be known, the fitted value
of W0 can serve as a consistency check.

E. Construction of the phase diagram
Consider the Gibbs free energy as a function of system compo-

sition as shown in Fig. 3 (blue curve). Two-phase coexistence occurs
if this function has a concave region. A homogeneous system with a
concentration x0 < x < x1 is not thermodynamically stable, and the
two coexistence concentrations x0 and x1 are found with a double
tangent construction in the diagram. There, a homogeneous system
can lower its free energy by going down to the orange line, the dou-
ble tangent. Physically, the linear function corresponds to a system
that consists of two separated phases of composition x0 (A-rich) and
x1 (B-rich), ignoring any interface terms. The double tangent to a
function f (x) is found by solving a system of two equations with two
unknowns,

f ′(x0) = f ′(x1), (30)

f (x0) + f ′(x0)(x1 − x0) = f (x1). (31)

An important thing to note is that one can replace f (x) by
g(x) = f (x) + kx, i.e., add an arbitrary linear term, without changing
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FIG. 3. (Blue) Gibbs free energy as a function of composition when there is
two-phase coexistence. The data shown are for the NaCl–KCl system at a tem-
perature of 500 K, with x denoting the mole fraction of KCl. Note that the linear
part of the Gibbs energy has been subtracted, as this will not affect the final result.
(Orange) The double tangent construction yields the coexistence concentrations
x0 and x1.

these equations and hence the result for (x0, x1). In practice, almost
always the equations have to be solved numerically. To give an exam-
ple, even in the simple case of a regular solution model, the resulting
equation

ln
x

1 − x
= Ω(2x − 1) (32)

does not have an algebraic solution.

F. Simulation details
The primary simulations to obtain the phase diagram were

carried out using an in-house code, ATOMH.60 We also used
LAMMPS61 and DL_POLY62 for auxiliary calculations. If not oth-
erwise stated, the system size was N = 256 ion pairs, or 512 par-
ticles, and the pressure p = 1 bar. The cutoff for the non-bonded
van der Waals and real-space Coulombic interactions was 0.9 nm.
Long range van der Waals corrections were applied to the energy
and the virial. The long-range part of the Coulomb interaction
was calculated using Ewald summation, with the relative accuracy
parameter set to 10−6. For MD simulations, the time step was
Δt = 2 fs. For MC simulations, one sweep corresponded to 512
single-particle moves and on average 50 exchange moves (Na and
K swaps) and ten volume moves. The quantity of interest, the chem-
ical potential difference Δμ, was sampled every 50 sweeps by per-
forming a virtual transmutation of every Na and K atom to the
opposite type and updating the corresponding average [Eqs. (17)
and (18)].

III. RESULTS AND DISCUSSION
A. Force field checks

For a first check of the force field accuracy, we performed sim-
ulations of the pure NaCl and KCl crystalline phases, respectively.

The average lattice energies at T = 298 K were U(NaCl) = −769.95
± 0.01 kJ mol−1 per ion-pair, and U(KCl) = −700.43 ± 0.01 kJ
mol−1 per ion-pair, which are in excellent agreement with experi-
mentally determined lattice energies, Uexpt(NaCl) = −770.3 kJ mol−1

per ion-pair, and Uexpt(KCl) = −701.2 kJ mol−1 per ion-pair.64

The results for the lattice constants at T = 298 K are given
in Fig. 4. Accounting for the estimated uncertainty, there is good
agreement between both the MC and MD results and different sim-
ulation packages. There are eight atoms per unit cell, so the lattice
constant and (number) density are related by ρ = 8/a3. The densi-
ties are ρ(NaCl) = 0.043 595 ± 0.000 007 Å−3 and ρ(KCl) = 0.032 008
± 0.000 004 Å−3. The corresponding mass densities are ρm(NaCl)
= 2.1154 ± 0.0004 g/cm3 and ρm(KCl) = 1.9812 ± 0.0002 g/cm3. Den-
sities of the mixture as a function of composition for a few other
selected temperatures are shown in Fig. 5. In the range of tempera-
tures investigated, there is an approximately linear relationship sim-
ilar to Vegard’s law63 between the lattice constant, composition, and
temperature,

a ≈ cxx + cTT + a0. (33)

The fitted parameter values are cx = 0.62796 Å, cT = 3.1485
× 10−4 Å/K, and a0 = 5.5911 Å.

B. Free energies of the pure end states
We calculated the (Helmholtz) free energies of pure NaCl

(x = 0) and pure KCl (x = 1) using the Einstein crystal approach
via thermodynamic integration (TI). These calculations closely fol-
lowed those in a previous work of Anwar, Frenkel, and Noro,65 so
only a brief overview is given here. The simulations were carried
out at a fixed volume corresponding to a pressure of p = 1 bar.
We used the Gauss–Legendre quadrature with n = 16 λ nodes for
the numerical integration of the free energy derivative ∂F/∂λ. The

FIG. 4. Lattice constants for the pure phases and estimated uncertainties at 298
K. (Blue) ATOMH code results. (Orange) DL_POLY code results. (Red) LAMMPS
code results. Iso denotes an isotropic barostat implying a cubic simulation box and
flex a fully flexible box. System size is N = 864 ion pairs (1728 particles, six unit
cells in each direction).
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FIG. 5. Densities as a function of system composition at three selected tempera-
tures.

equations are provided in the supplementary material. In the Ein-
stein crystal part of the calculation, the thermal de Broglie wave-
length Λ was set to 1 Å for all species. For the conditions investigated
here, the pV term to convert the Helmholtz free energy into a Gibbs
free energy is very small and hence deemed unimportant. For exam-
ple, for NaCl at 298 K, the correction is pVNaCl/NNaClkBT ≈ 0.001,
much smaller than even the probably slightly underestimated uncer-
tainty in the Helmholtz free energy. The results are summarized in
Table II.

For NaCl at 298 K, our result is F̂NaCl/kBT = −306.525 ± 0.005.
The result compares well with that of Aragones et al.,66 which is
−306.22 kBT. Note that these authors reported the value per par-
ticle, while in our study, all values are given per ion pair, which
accounts for the factor two difference to the raw result reported in
Table II of the reference. As discussed in Sec. II A, the Cl–Cl B, C,
and D potential parameters utilized in the present study differ from
the Cl–Cl parameters of pure NaCl in the study by Aragones, Sanz,
and Vega. Our B, C, and D parameters are averages from the Cl–
Cl parameters for pure NaCl and KCl systems, possibly contribut-
ing to the 0.3 kBT difference between our NaCl free energies and
theirs.

C. Phase diagram calculation
The miscibility gap is theoretically unstable and inaccessible to

regular semigrand canonical simulations, an issue which was noted
by Sadigh et al.67 Given a fixed Δμ, the semigrand canonical sim-
ulations always find a composition on either side of the miscibility

TABLE II. Helmholtz free energies for pure crystalline phases of NaCl and KCl from
thermodynamic integration with the thermal de Broglie wavelength set to 1 Å for all
species to enable easier comparison with published values of Aragones et al.66 In
analogy to Ĝ, F̂ denotes the Helmholtz free energy per ion pair.

T F̂NaCl/kBT F̂KCl/kBT

298 −306.525 ± 0.005 −279.119 ± 0.004
600 −150.766 ± 0.005 −137.474 ± 0.005

gap and stay there. Without a good initial guess for the value of Δμ
at coexistence, one needs to find it in a tedious, iterative procedure.
For example, one can run semigrand simulations with a coarse grid
of Δμ values and then iteratively improve the resolution of Δμ at
coexistence. Results from this procedure at T = 600 K are shown in
blue in Fig. 6. This procedure must be repeated for each temperature
below the critical point.

Figure 6 also shows results from Widom’s semi-grand method.
While both methods agree on the overall curve, only Widom’s semi-
grand method is able to probe the miscibility gap. Furthermore, for
the Widom method, the total number of simulations necessary to
run is much lower, as the whole curve can be obtained in a single
parameter sweep varying the KCl mole fraction from 0 to 1 in equal
increments.

For the Widom method, a NaCl–KCl solid solution of any arbi-
trary composition is unable to undergo phase separation into the
two co-existing phases due to interfacial energy barriers, enabling
its chemical potential to be monitored. This opportunity of being
able to sample the chemical potential of unstable and metastable
structures is essential to the application of the double tangent
method. Hence, it appears that the same interfacial barriers that
limit the study of phase transition phenomenon by brute force
simulation serve here to make the miscibility gap accessible. To
confirm that the system does not phase-separate into an Na-
rich and a K-rich domain over the full length of our simula-
tions, we carried out spatial and temporal correlation analysis.
The analysis and associated results are detailed in the supplemen-
tary material and indeed confirm the systems remain homoge-
neous. For larger systems that do phase-separate, one would need
to employ alternative sampling techniques to probe the miscibility
gap, such as the generalized replica exchange method developed by
Kim et al.68

Our experience of Widom’s semi-grand approach suggests
that this methodology would readily carry over to more complex
solid solution systems. There appears to be a remarkable cou-
pling of this method with solid solution phase stability. Conver-
gence of this method requires appreciable overlap of the energy

FIG. 6. Comparison between a regular semi-grand canonical simulation and the
Widom-like virtual transmutation method for NaCl–KCl at T = 600 K. It is not
possible to access the miscibility gap region with the regular semi-grand method.
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distributions of the original system and that of the virtual per-
turbed state (when a molecule has been transmutated). This trans-
lates to the transmutation energy differences not being exces-
sively large. Phase stability of a solid solution relies on exactly
the same energy criteria—the substitution energy difference again
must not be too large. The implication is that any system that
forms a solid solution is likely to be accessible to Widom’s semi-
grand sampling, which would include flexible molecular systems
too.

We have performed simulations covering the full range of
compositions for multiple temperatures (Fig. 7). The obtained fit
parameters W1 and W2 are used to find the corresponding coex-
istence concentrations x0 and x1 via a double tangent construc-
tion. The highest temperature, 800 K, is above the critical point.
This is already obvious from the functional form of Δμ(x), which
is strictly monotonic. Consequently, the corresponding Gibbs free
energy is convex, and no phase coexistence occurs. The results
for (x0, x1) are shown in Fig. 2 and plotted on top of the exper-
imental phase diagram from the literature. Note that in this fig-
ure, the x-axis denotes the mole fraction of NaCl. The accuracy of
the prediction is remarkable, highlighting the quality of the NaCl–
KCl forcefield, validating Thakkar’s mixing rule,37 and the power
of Widom’s semi-grand simulation protocol. The largest deviations
between the experimental results and the ones computed in this
study appear at higher temperatures near the critical point. Presum-
ably, this is due to larger fluctuations in the vicinity of the crit-
ical point, which make it harder for the computational results to
converge.

To verify the consistency of our simulations, we show the
results for the Gibbs free energy difference between the two pure
phases (ĜKCl − ĜNaCl) as a function of temperature in Fig. 8. The data
shown here are derived from both the independently determined

FIG. 7. Chemical potential difference for NaCl–KCl at a range of temperatures. x is
the fraction of KCl. Each square is the result of a simulation at a fixed composition.
The lines are fits with Eq. (28).

FIG. 8. Gibbs free energy difference between the pure phases obtained from the
fitting constant W 0 and from independent Einstein crystal-based calculations for
the pure phases. For T = 298 K, the two results are so close that only the topmost
marker (blue) is visible.

free energies of the pure end states and from the semi-grand canoni-
cal Widom simulations. For the Widom simulations, the free energy
difference corresponds directly to the value of the fit parameter W0.
The free energies of the pure KCl and NaCl are those calculated
using thermodynamic integration starting from an Einstein crystal
at T = 298 K and T = 600 K. As seen in the figure, we have almost per-
fect agreement between the two methods. Note that the semi-grand
canonical Widom results for T = 298 K are not shown in Fig. 7, and
we use them only for the consistency check.

D. Critical point extrapolation
We use Guggenheim’s empirical formula69 to extrapolate the

critical point. The original formula is for the critical point in a gas–
liquid transition of argon, and it gives the gas (ρg) and liquid (ρl)
densities as a function of temperature,

FIG. 9. Extrapolated critical point for NaCl–KCl using the Guggenheim formula
[Eqs. (34) and (35)]. The red data points are the same as those shown in Fig. 2,
but note that the x-axis is reversed compared to Fig. 2.
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ρl

ρc
= 1 + 0.75(

Tc − T
Tc
) + 1.75(

Tc − T
Tc
)

1/3
, (34)

ρg

ρc
= 1 + 0.75(

Tc − T
Tc
) − 1.75(

Tc − T
Tc
)

1/3
. (35)

The critical point is (Tc, ρc). In the present application, mole fraction
x is substituted for the density. We allow both the critical point and
the numerical parameters 0.75 and 1.75 to change in order to give
the best fit to our data. The result is shown in Fig. 9.

IV. CONCLUDING REMARKS
We have demonstrated that the semi-grand canonical Widom

method58 can accurately and efficiently compute the phase diagram
for a multicomponent solid as a function of temperature and compo-
sition. Specifically, we have computed the binodal for solid solutions
of Tosi–Fumi NaCl and KCl below the critical temperature. We
used the semi-grand Widom framework to compute the chemical
potential difference between NaCl and KCl components as a func-
tion of composition. The chemical potential data were converted to
ideal and excess free energies, fitted to a Margules model, and then
used to determine coexistence compositions by common tangent
constructions.

Our results are in remarkable agreement with the phase dia-
gram based on experimental data, a testament to the Fumi–Tosi
force field, Thakkar’s mixing rule, and the robust convergence of
the Widom’s semi-grand method. Perhaps more importantly, our
results provide coexistence conditions and chemical potentials at
metastable compositions within the binodal. Thus, the results open
the door to quantitative studies of nucleation, growth, and coarsen-
ing processes within solid solutions.

SUPPLEMENTARY MATERIAL

See the supplementary material for details on the thermody-
namic integration procedure to calculate the free energies of the
pure salts and absolute free energy results using the true ther-
mal de Broglie wavelengths, comparison of our version of the
Cl–Cl interaction with the one used in earlier studies and the
lattice parameter of the mixture for different temperatures, and
a spatial and temporal correlation analysis to ensure composi-
tional homogeneity throughout the unstable zone of the phase
diagram.
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